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Departamento de F́ısica de Altas Enerǵıas, Instituto de Ciencias Nucleares,

Universidad Nacional Autónoma de México,
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1 Introduction and summary

When a charge radiates, energy conservation dictates that it must be subjected to a reac-

tive force originating from its self-field, that tends to damp its motion. In the context of

classical electrodynamics, the study of this damping or radiation reaction force began over

a century ago [1–4], and continues to this day [5, 6]. Reviews and additional references on

the subject may be found in [7–10].

In a non-relativistic approximation, the dynamics of an electron that is modeled as a

vanishingly small spherically symmetric charge distribution is controlled by the Abraham-

Lorentz equation [1, 2]

m
(

~̈x − te
...
~x
)

= ~F , (1.1)

where ˙≡ d/dt and te ≡ 2e2/3mc3 is a timescale set by the classical electron radius. In this

equation, the damping force (the second term in the left-hand side) is seen to be propor-

tional to the jerk ~ ≡ ~̇a ≡ ~̈v. The search for a Lorentz-covariant version of (1.1) led to the

(Abraham-)Lorentz-Dirac equation [4],

m

(

˚̊xµ − te

[

˚̊̊xµ − 1

c2
˚̊xν ˚̊xν x̊µ

])

= Fµ , (1.2)

with ˚≡ d/dτ , τ the proper time (defined such that x̊µx̊µ = −c2) and Fµ ≡ γ(~F · ~v/c, ~F )

the four-force. The second term within the square brackets (proportional to the square

of the proper acceleration) is the negative of the rate at which energy and momentum is

carried away from the charge by radiation, according to the covariant Lienard(-Larmor-

Heaviside-Abraham) formula. So, strictly speaking, it is only this term that can properly

be called radiation reaction. The first term within the square brackets, usually called the

Schott term, and whose spatial part yields the damping force of (1.1) in the non-relativistic

limit, is known to arise from the effect of the charge’s ‘near’ or ‘bound’ (as opposed to ra-

diation) field [7, 11].
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The appearance of third-order terms in (1.1) and (1.2) leads to unphysical behavior,

including pre-accelerating and self-accelerating (or ‘runaway’) solutions. These deficiencies

are known to originate from the assumption that the charge is pointlike.1 For a charge

distribution of small but finite size l, the above equations can be shown to be truncations

of expressions that involve an infinite number of derivatives (ld/dt)n (and generally in-

clude terms that are non-linear in these derivatives), but are physically sound as long as

l > cte and [7–9].

Of course, one should keep in mind that the unphysical behavior implied by (1.1)

and (1.2) would be visible only for time and distance scales smaller than the Compton wave-

length λC ≡ ~/m of the charge, and thus lies outside of the actual range of validity of classi-

cal electrodynamics. How the preceding story generalizes to the case of fully quantum elec-

trodynamics (QED) has been studied from different angles in [12–15] and references therein.

In particular, in [12] it was shown that, for a pointlike non-relativistic electron, QED leads

to an equation of motion with an infinite number of higher derivatives, implying that the

electron acquires an effective size l = λC due to its surrounding cloud of virtual particles.

Going further to non-Abelian gauge theories is a serious challenge.2 paper to show

that the AdS/CFT correspondence [18–20] allows us to examine this question rather easily

in quantum strongly-coupled non-Abelian gauge theories. The essence of the matter is

that in the context of this duality the quark corresponds to the tip of a string, whose body

codifies the profile of the non-Abelian (near and radiation) fields sourced by the quark. In

other words, the quark has a tail, and it is this tail that is responsible for the damping

force. Indeed, this mechanism has already been seen at work in the recent computations

of the drag force exerted on the quark by a thermal plasma, which is described in dual

language in terms of a string living on a black hole geometry [21, 22]. Our analysis makes

it clear that, irrespective of whether a spacetime black hole is present or not, the body of

the string plays the role of an energy sink, as befits its identification as the embodiment of

the gluonic degrees of freedom.3

We expect this basic story to apply generally to all examples of the gauge/string dual-

ity, including cases with finite temperature or chemical potentials, but for simplicity we will

concentrate on the case of quark motion in the vacuum of N = 4 super-Yang-Mills (SYM),

where, building upon previous work [25, 30], we can achieve full analytic control. As has

been remarked several times in the past, it is interesting that even in this non-confining

theory the gluonic field configuration can be encoded in a ‘QCD’ string, albeit one that

lives in a curved higher dimensional spacetime. Our results are a direct consequence of this

amazing fact.

The paper is organized as follows. In section 2, we explain how the standard string

1This assumption leads to the further complication of an infinite electromagnetic self-energy, which has

already been been absorbed within the renormalized mass m shown in (1.1) and (1.2). An alternative

approach which circumvents this divergence has been proposed recently in [5].
2See respectively [16] and [17] for work on radiation within classical and (weakly-coupled) quantum

Yang-Mills theory.
3On the other hand, energy loss via the string does turn out to be closely associated with the appearance

of a worldsheet horizon, as noticed initially in [23, 24] at finite temperature and emphasized in [25] for the

zero temperature case. This association has been further studied in [26–29].

– 2 –
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dynamics is mapped by the AdS/CFT correspondence onto the dynamics of an extended

radiating particle. We begin by setting up our problem in section 2.1, reviewing the

relevant context and emphasizing some key features — most notably, the fact that the quark

with finite mass that the correspondence puts at our disposal is automatically ‘dressed’ or

‘composite’, as discussed around eq. (2.7). We then attack the problem in section 2.2,

where we derive an equation of motion for this quark, eq. (2.26), which constitutes our

main result.4 As explained at length in the paragraphs that follow it, this equation is a

nonlinear generalization of (1.2), which incorporates the effects of radiation damping, but

has no pre-accelerating or self-ac celerating solutions. From this equation one can read off

a non-standard dispersion relation for the quark, eq. (2.32), as well as a Lorentz covariant

formula for its radiation rate, eq. (2.33). An interesting novel feature in these expressions

is their dependence on the external force exerted on the quark, which is a reflection of its

extended, and hence deformable, nature. We close section 2 by commenting on our failure

to rewrite (2.26) in terms of an action principle.

In section 3, we explore some of the physics implied by (2.26), specializing to a few

simple examples. For the case of one-dimensional motion, we show in section 3.1 that even

though, as expected on physical grounds, zero external force implies zero acceleration, the

converse is not true: the quark will not accelerate when subjected to an external force that

takes the specific form (3.2) (which is identically zero only when the parameter t0 → ±∞).

More generally, for each given quark trajectory there is a one-parameter family of possible

external forces. This again is a manifestation of the fact that, because of the extended char-

acter of the quark, the energy supplied to it can not only increase its velocity, but also mod-

ify its associated gluonic field profile. We end the paper by studying the nonrelativistic limit

of (2.26) in section 3.2, where the linearized form of the expressions allows us to make direct

contact with the energy analysis of ([25, 30]) and to easily write down an action principle.

All in all, then, we have in (2.26) a physically sensible and interesting description of

the dynamics of a composite quark in N = 4 SYM. This result serves, on the one hand,

to illustrate the power of the AdS/CFT correspondence, and on the other, to shed some

light on the largely uncharted terrain of radiation in strongly-coupled non-Abelian gauge

theories. It would be interesting to extend this analysis in a number of directions. In

particular, it seems worthwhile to explore the manner in which the split between intrinsic

and radiated energy (and momentum) of the quark achieved in [25, 30] and the present

paper, via examination of the string worldsheet, manifests itself in the gluonic field profile,

by directly computing the expectation value of the energy-momentum tensor or similar

local operators [32]. It is also natural to try to carry over some of the present methods

to the finite temperature context [33], where one sh ould be able to make contact with

previous AdS/CFT analyses of energy loss in a thermal plasma (a rather large body of

work detonated by the seminal works [21, 22, 34, 35]), including the interesting recent

studies of Brownian motion [36–38].

4A brief report of this derivation was given in the recent letter [31].
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2 From strings to quarks

2.1 Basic setup

It is by now well-known that strongly-coupled N = 4 SU(Nc) SYM with coupling gYM

is dual to Type IIB string theory on a background that asymptotically approaches the

AdS5 × S5 geometry5

ds2 = GMNdxMdxN =
R2

z2

(

−dt2 + d~x2 + dz2
)

+ R2dΩ5 , (2.1)

R4

l4s
= g2

YMNc ≡ λ

(with a constant dilaton and Nc units of Ramond-Ramond five-form flux through the five-

sphere), where ls denotes the string length [18]. The radial direction z is mapped holograph-

ically into a variable length scale in the gauge theory [39]. The directions xµ ≡ (t, ~x) are par-

allel to the AdS boundary z = 0 and are directly identified with the gauge theory directions.

The state of IIB string theory described by the unperturbed metric (2.1) corresponds to the

vacuum of the N = 4 SYM theory, and the closed string sector describing (small or large)

fluctuations on top of it fully captures the gluonic (+ adjoint scalar and fermionic) physics.

From the gauge theory perspective, the introduction of an open string sector associated

with a stack of Nf D7-branes in the geometry (2.1) is equivalent to the addition of Nf

hypermultiplets in the fundamental representation of the SU(Nc) gauge group, breaking

the supersymmetry down to N = 2 [40]. These are the degrees of freedom that we refer to

as ‘quarks,’ even though they include both spin 1/2 and spin 0 fields. For Nf ≪ Nc, the

backreaction of the D7-branes on the geometry can be sensibly neglected; in the field theory

this corresponds to working in a ‘quenched’ approximation which disregards quark loops

(as well as the positive beta function they would generate). The D7-branes cover the four

gauge theory directions, and extend along the radial AdS direction up from the boundary

at z = 0 to a position z = zm where they ‘end’ (meaning that the S3 ⊂ S5 that they are

wrapped on shrinks down to zero size), which is inversely proportional to the quark mass,

zm =

√
λ

2πm
. (2.2)

An isolated quark is dual to an open string that extends radially from the D7-branes

to the AdS horizon at z → ∞. The string dynamics follows as usual from the Nambu-

Goto action

SNG = − 1

2πα′

∫

d2σ
√

− det gab ≡
∫

d2σ LNG , (2.3)

where gab ≡ ∂aX
M∂bX

NGMN(X) (a, b = 0, 1) denotes the induced metric on the world-

sheet. In our work the entire string will be taken (consistently with the corresponding

equations of motion) to lie at the ‘North Pole’ of the S5 (the point where the S3 ⊂ S5 that

the D7-branes are wrapped on collapses to zero size), so the angular components of the

metric (which are associated with the orientation of the gauge theory fields in the internal

5From this point on we work in natural units c = 1 = ~.
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SU(4) symmetry group) will not play any role, and the lower endpoint of the string will

necessarily lie at z = zm.

We can exert an external force ~F on the string endpoint by turning on an electric field

F0i = Fi on the D7-branes. This amounts to adding to the Nambu-Goto action the usual

minimal coupling

SF =

∫

dτ Aµ(X(τ, zm))∂τXµ(τ, zm) ,

or, in terms of the quark worldline,

SF =

∫

dτ Aµ(x(τ)) x̊µ(τ) . (2.4)

Notice that the string is being described (as is customary) in first-quantized language,

and, as long as it is sufficiently heavy, we are allowed to treat it semiclassically. In gauge

theory language, then, we are coupling a first-quantized quark to the gluonic (+ other SYM)

field(s), and then carrying out the full path integral over the strongly-coupled field(s) (the

result of which is codified by the AdS spacetime), but treating the path integral over the

quark trajectory xµ(τ) in a saddle-point approximation.

Variation of the string action SNG + SF implies the standard Nambu-Goto equation of

motion for all interior points of the string, plus the standard boundary condition [41]

Πz
µ(τ)|z=zm

= Fµ(τ) ∀ τ , (2.5)

where

Πz
µ ≡ ∂LNG

∂(∂zXµ)
=

√
λ

2π

(

(∂τX)2∂zXµ − (∂τX · ∂zX)∂τXµ

z2
√

(∂τX · ∂zX)2 − (∂τX)2(1 + (∂zX)2)

)

(2.6)

is the worldsheet (Noether) current associated with spacetime momentum, and we haver

recognized Fµ = −Fνµ∂τxν = (−γ ~F · ~v, γ ~F ) as the Lorentz four-force.

For the interpretation of our results it will be crucial to keep in mind that the quark

described by this string is not ‘bare’ but ‘composite’ or ‘dressed’. This can be seen most

clearly by working out the expectation value of the gluonic field surrounding a static quark

located at the origin [43],6

1

4g2
YM

〈Tr F 2(x)〉 =

√
λ

16π2|~x|4











1 −
1 + 5

2

(

2πm|~x|√
λ

)2

(

1 +
(

2πm|~x|√
λ

)2
)5/2











. (2.7)

For m → ∞ (zm → 0), this is just the Coulombic field expected (by conformal invariance)

for a pointlike charge. For finite m the profile is still Coulombic far away from the origin

but in fact becomes non-singular at the location of the quark,

1

4g2
YM

〈Tr F 2(x)〉 =

√
λ

128π2

[

15

(

2πm√
λ

)4

− 35

|~x|4
(

2πm|~x|√
λ

)6

+ · · ·
]

for |~x| <

√
λ

2πm
.

6More precisely, the operator in the left-hand side of (2.7) is the dual of the dilaton field, and includes

not only the standard Yang-Mills term but also scalar and fermion contributions that can be found in [42],

and which we suppress for notational simplicity.

– 5 –
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As seen in these equations, the characteristic thickness of this non-Abelian charge distri-

bution is precisely the length scale zm defined in (2.2). This is then the size of the gluonic

cloud that surrounds the quark, or in other words, the analog of the Compton wavelength

for our non-Abelian source.

It is interesting to note that the string can be alternatively viewed as a Born-Infeld

string, i.e., a soliton of the gauge and scalar fields on the D7-brane [44]. Since the small

fluctuations of these fields (corresponding to microscopic open strings) are known to be

dual to mesons, the composite quark itself can be thought of as a soliton constructed

by aligning a large number of mesons [45]. The cloud surrounding our quark is then

best thought of as ‘mesonic’ rather than ‘gluonic’. Mesons are indeed known to be the

lightest states in the spectrum of the strongly-coupled gauge theory, with masses of order

mmes ≡ 1/zm = 2πm/
√

λ ≪ m [46], and form factors with size set by zm [47].

So, to summarize, zm can properly be called the quark Compton wavelength insofar

as it gives the size of the cloud of virtual particles surrounding the quark, but one should

bear in mind that it is given not by 1/m but by 1/mmes, and in this sense it could also be

referred to as the meson Compton wavelength.

2.2 Equation of motion for the quark

The first analysis of an accelerating quark via the AdS/CFT correspondence was carried

out in [48], which used tools developed in [49] to study the dilatonic waves given off by

small fluctuations on a radial string in AdS5, and infer from them the profile of the gluonic

field 〈Tr F 2(x)〉 in the presence of a quark undergoing small oscillations. The results of [48]

painted an interesting picture of the propagation of nonlinear waves in N = 4 SYM, but did

not allow a definite identification of waves with the 1/|~x| falloff associated with radiation.

(More recently, this falloff has been successfully detected in the same setup through a

calculation of the energy-momentum tensor 〈Tµν〉 [50].)

In [48] it was noted that for zm → 0 and in the linearized approximation, the string

action (2.3) correctly implies the expected action for an ordinary non-relativistic particle

of mass m → ∞. In the present section we will obtain the relativistic generalization of this

result retaining the full non-linear structure of the Nambu-Goto string, and then further

extend the analysis to the case of finite m.

We will take as our starting point the results obtained in a remarkable paper by

Mikhailov [30], which we now briefly review (a more detailed explanation can be found

in [25]). This author considered an infinitely massive quark, and was able to solve the

equation of motion for the dual string on AdS5, for an arbitrary timelike trajectory of the

string endpoint. In terms of the coordinates used in (2.1), his solution is

Xµ(τ, z) = z
dxµ(τ)

dτ
+ xµ(τ) , (2.8)

with xµ(τ) the worldline of the string endpoint at the AdS boundary — or, equivalently,

the worldline of the dual, infinitely massive, quark — parametrized by its proper time τ .

Combining (2.1) and (2.8), the induced metric on the worldsheet is found to be

gττ =
R2

z2
(z2˚̊x2 − 1), gzz = 0, gzτ = −R2

z2
, (2.9)

– 6 –
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implying in particular that the constant-τ lines are null, a fact that plays an important

role in Mikhailov’s construction. The solution (2.8) is ‘retarded’, in the sense that the

behavior at time t = X0(τ, z) of the string segment located at radial position z is completely

determined by the behavior of the string endpoint at an earlier time tret(t, z) obtained by

projecting back toward the boundary along the null line at fixed τ . An analogous ‘advanced’

solution built upon the same endpoint/quark trajectory can be obtained by reversing the

sign of the first term in the right-hand side of (2.8). In gauge theory language, this choice

of sign corresponds to the choice between a purely outgoing or purely ingoing boundary

condition for the waves in the gluonic field at spatial infinity. Both on the string and the

gauge theory sides, more general configurations should of course exist, but obtaining them

explicitly is difficult due to the highly non-linear character of the system. Henceforth we

will focus solely on the retarded solutions, which are the ones that capture the physics of

present interest, with influences propagating outward from the quark to infinity.

From the µ = 0 component of (2.8), parametrizing the quark worldline by x0(τ) in-

stead of τ , and using dτ =
√

1 − ~v 2dx0, where ~v ≡ d~x/dx0, the relation that defines the

retarded time follows as

t = z
1√

1 − ~v 2
+ tret , (2.10)

where the endpoint velocity ~v is meant to be evaluated at tret. In these same terms, the

spatial components of (2.8) can be formulated as

~X(t, z) = z
~v√

1 − ~v 2
+ ~x(tret) = (t − tret)~v + ~x(tret) . (2.11)

Using (2.10) and (2.11), Mikhailov was able to rewrite the total string energy in the form

E(t) =

√
λ

2π

∫ t

−∞
dtret

~a 2 − [~v × ~a]2

(1 − ~v 2)3
+ Eq(~v(t)) , (2.12)

where of course ~a ≡ d~v/dx0. The first term codifies the accumulated energy lost by the

quark over all times prior to t, and is surprisingly seen to have precisely the same form

as the standard Lienard formula from classical electrodynamics.7 The second term in

the above equation arises from a total derivative on the string worldsheet, and gives the

expected Lorentz-covariant expression for the energy intrinsic to the quark [25],

Eq(~v) =

√
λ

2π

(

1√
1 − ~v 2

1

z

)∣

∣

∣

∣

zm=0

∞
= γm . (2.13)

For the spatial momentum, [25, 30] similarly find

~P (t) =

√
λ

2π

∫ t

−∞
dtret

~a 2 − [~v × ~a]2

(1 − ~v 2)3
~v + ~pq(~v(t)) , (2.14)

with

~pq =

√
λ

2π

(

~v√
1 − ~v 2

1

z

)∣

∣

∣

∣

zm=0

∞
= γm~v . (2.15)

7Possible experimental implications of this result have been explored in [51].
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We see then that, in spite of the non-linear nature of the system, Mikhailov’s procedure

leads to a clean separation between the tip and the tail of the string, i.e., between the

quark (including its near field) and its gluonic radiation field. We will now exploit this

separation to study in more detail the dynamics of the quark.

Our initial observation is that, when we regard the Nambu-Goto action as a functional

of the quark trajectory xµ by plugging (2.9) back into (2.3)+(2.4), we can explicitly carry

out the integral over z to obtain

SNG + SF = − R2

2πα′

∫

dτ

∫ ∞

zm→0

dz

z2
+

∫

dτ Aµ(x(τ)) x̊µ(τ) (2.16)

= −m

∫

dτ +

∫

dτ Aµ(x(τ)) x̊µ(τ) ,

which is evidently the standard action for a pointlike externally forced relativistic particle

(with mass m → ∞). Notice that the associated equation of motion does not include a

damping force, which is just as one would expect for an infinitely massive charge, because

the coefficient te ∝ 1/m of the damping terms in (1.1) and (1.2) approaches zero as m → ∞.

Let us now consider the more interesting case of a quark with finite mass, zm > 0,

where, as we emphasized in the previous subsection, our non-Abelian source is no longer

pointlike but has size zm. In this case the string endpoint is at z = zm, and we must

again require it to follow the given quark trajectory, xµ(τ). As before, this condition by

itself does not pick out a unique string embedding. Just like we discussed for the infinitely

massive case below (2.9), we additionally require the solution to be ‘retarded’ or ‘purely

outgoing’, in order to focus on the gluonic field causally set up by the quark. As in [25],

we can inherit this structure by truncating a suitably selected retarded Mikhailov solution.

The embeddings of interest to us can thus be regarded as the z ≥ zm portions of the

solutions (2.8), which are parametrized by data at the AdS boundary z = 0.8 Henceforth

we will use tildes to label these (now merely auxiliary) data, and distinguish them from the

actual physical quantities (velocity, proper time, etc.) associated with the endpoint/quark

at z = zm, which will be denoted without tildes.

In this notation, (2.8) reads

Xµ(τ̃ , z) = z
dx̃µ(τ̃)

dτ̃
+ x̃µ(τ̃ ) . (2.17)

Repeated differentiation of this equation with respect to τ̃ and evaluation at z = zm (where

8That this direct truncation indeed retains the retarded structure of the solutions is manifestly confirmed

in our final rewriting (2.27), where information is seen to propagate upward along the body of the string,

i.e., from the UV to the IR of the gauge theory.
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we can read off the quark trajectory xµ(τ̃) ≡ Xµ(τ̃ , zm)) leads to the recursive relations

dxµ

dτ̃
= zm

d2x̃µ

dτ̃2
+

dx̃µ

dτ̃
,

d2xµ

dτ̃2
= zm

d3x̃µ

dτ̃3
+

d2x̃µ

dτ̃2
,

...
dnxµ

dτ̃n
= zm

dn+1x̃µ

dτ̃n+1
+

dnx̃µ

dτ̃n
. (2.18)

Adding these equations respectively multiplied by (−zm)n−1, we can deduce that

dx̃µ

dτ̃
=

dxµ

dτ̃
− zm

d2xµ

dτ̃2
+ z2

m

d3xµ

dτ̃3
− · · · , (2.19)

and, upon further differentiation,

d2x̃µ

dτ̃2
=

d2xµ

dτ̃2
− zm

d3xµ

dτ̃3
+ z2

m

d4xµ

dτ̃4
− · · · . (2.20)

This last expression already takes us halfway towards the equation we are after, but we still

need to find a relation between dτ̃ and the endpoint/quark proper time dτ , and similarly

rewrite d2x̃µ/dτ̃2 in terms of quantities at the actual string boundary z = zm instead of

the auxiliary data at z = 0.

The first task is easy: from (2.17) it follows that

dXµ = dz
dx̃µ

dτ̃
+ dτ̃

(

z
d2x̃µ

dτ̃2
+

dx̃µ

dτ̃

)

,

which evaluated at fixed z = zm implies

dxµ = dτ̃

(

zm
d2x̃µ

dτ̃2
+

dx̃µ

dτ̃

)

,

and therefore

dτ2 ≡ −dxµdxµ = dτ̃2

[

1 − z2
m

(

d2x̃

dτ̃2

)2
]

. (2.21)

To arrive at this last equation, we have made use of the fact that τ̃ is by definition the proper

time for the auxiliary worldline at z = 0, so (dx̃/dτ̃ )2 = −1 and (dx̃/dτ̃ ) · (d2x̃/dτ̃2) = 0.

What remains then is to express d2x̃µ/dτ̃2 as a function of quark data. For this we

note first that, upon substituting the solution (2.17), the momentum current (2.6) (with

appropriate tildes) evaluated at z = zm simplifies to

2π√
λ

Π̃z
µ =

1

zm

d2x̃µ

dτ̃2
+

(

d2x̃

dτ̃2

)2
dx̃µ

dτ̃
. (2.22)

To avoid possible confusion, we should note that the tilde in the left-hand side does not

indicate evaluation at z = 0 (as all other tildes do), but the fact that this current is defined
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as charge (momentum) flow per unit τ̃ . The corresponding flow per unit τ is clearly just9

Πz
µ = (∂τ̃/∂τ)Π̃z

µ, and it is this object which according to (2.5) must equal the external

force Fµ. Using this, (2.21) and the first equation of (2.18) in (2.22), one can deduce (after

some straightforward algebra) that

d2x̃µ

dτ̃2
=

1
√

1 − z4
m /F2

(

zm /Fµ − z3
m /F2 dxµ

dτ

)

, (2.23)

where we have used the abbreviation /Fµ ≡ (2π/
√

λ)Fµ. Since Fµdxµ/dτ = 0 (which is

merely the statement that no work is done on the quark in its instantaneous rest frame),

this implies that (d2x̃/dτ̃2)2 = z2
m /F2

, which allows (2.21) to be simplified into

dτ̃ =
dτ

√

1 − z4
m /F2

. (2.24)

Using (2.23) and (2.24), we can finally rewrite (2.20) in the form

zm /Fµ

√

1 − z4
m /F2

=

(

z3
m /F2

1 − z4
m /F2

)

dxµ

dτ
+

√

1 − z4
m /F2 d

dτ

[
√

1 − z4
m /F2 dxµ

dτ

]

(2.25)

−zm

√

1 − z4
m /F2 d

dτ

[
√

1 − z4
m /F2 d

dτ

[
√

1 − z4
m /F2 dxµ

dτ

]]

+ · · · .

This equation of motion for the quark contains an infinite number of derivatives of xµ,

precisely as one would expect for an extended color charge distribution, based on the

classical or quantum electrodynamic analogs [7, 8, 12] mentioned in the Introduction.

Notice that to arrive at this result we have made no assumption about the profile of the

charge distribution. The dual string dynamics automatically incorporates the physics of

this profile, which is codified by the slope ~s ≡ ∂z
~X(zm, t) [25]. It would be interesting

to explore this connection in more detail through a calculation of 〈Tr F 2(x)〉 and similar

observables for an accelerating quark in vacuum [32, 48, 50].

A more manageable form of the equation of motion can be obtained by going back to

the second equation in (2.18),

d2xµ

dτ̃2
=

d2x̃µ

dτ̃2
+ zm

d3x̃µ

dτ̃3
.

Through (2.23), (2.24) and (2.2), this can be reexpressed as

d

dτ





mdxµ

dτ −
√

λ
2πmFµ

√

1 − λ
4π2m4F2



 =
Fµ −

√
λ

2πm2F2 dxµ

dτ

1 − λ
4π2m4F2

, (2.26)

which is the equation we advertised in the Introduction. Notice that it involves only the

four-velocity and four-acceleration of the quark, so, in going from (2.25) to (2.26), we have

9The transformation rules for Πa

µ under more general reparametrizations can be found in, e.g., [52].
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traded an infinite number of higher derivatives for a somewhat more complicated Fµ de-

pendence. This is to some extent analogous to the possibility of trading (1.1), (1.2) or its

non-pointlike generalizations for an integro-differential (nonlocal in the force) equation with

derivatives of xµ only up to second order [7, 8]. What is different is that our end result, equa-

tion (2.26), does not involve any nonlocality. (It is also highly nonlinear, because it includes

effects that are neglected for simplicity in nearly all previous analyses of radiation damping.)

Before proceeding with the analysis of (2.26), we would like to note for future use that

the information we have gathered in the process of its derivation, and more specifically,

equations (2.18) and (2.23), allow Mikhailov’s solution (2.8) to be rewritten purely in terms

of z = zm data as

Xµ(τ, z) =





z − zm
√

1 − z4
m /F2





(

dxµ

dτ
− z2

m /Fµ
)

+ xµ(τ) . (2.27)

A first check on (2.26) is to note that it correctly reduces to md2xµ/dτ2 = Fµ in

the pointlike limit m → ∞ (where the Compton wavelength zm → 0). We will now per-

form a more substantial check by showing that it also makes firm contact with the results

of [25] at finite m.

In [25], two of us generalized the analysis of Mikhailov [30] to the case of a quark with

finite mass, concentrating for simplicity on motion along one dimension. We showed that

under such circumstances the total string (= field + quark) energy E and momentum P

are no longer given by (2.12) and (2.14), but become

E(t) =

√
λ

2π

∫ t

−∞
dt

F 2

m2

(

1 −
√

λ
2πm2 Fv

1 − λ
4π2m4 F 2

)

+
1 −

√
λ

2πm2 Fv
√

1 − λ
4π2m4 F 2

γm , (2.28)

P (t) =

√
λ

2π

∫ t

−∞
dt

F 2

m2

(

v −
√

λ
2πm2 F

1 − λ
4π2m4 F 2

)

+
v −

√
λ

2πm2 F
√

1 − λ
4π2m4 F 2

γm ,

with F the external force. These expressions show that for m < ∞ the rate (seen inside the

integrals) at which energy/momentum is radiated by the quark differs from the Lienard

result, and the formulas for the intrinsic energy Eq and momentum pq of the quark (given by

the terms that follow the integrals) are similarly non-standard. Now, the total momentum

P of the string (= field + quark) changes only due to the force that we exert on the

endpoint (= quark), so dP/dt = F , or, using (2.28),

√
λ

2π

F 2

m2

(

v −
√

λ
2πm2 F

1 − λ
4π2m4 F 2

)

+
d

dt





mγv −
√

λ
2πmγF

√

1 − λ
4π2m4 F 2



 = F . (2.29)

Let us now compare this against our equation of motion (2.26). For linear motion

along direction x1, we have dxµ/dτ = γ(1, v) and Fµ = γ(Fv, F ), so the µ = 1 component

of (2.26) reads

d

dt





mγv −
√

λ
2πmγF

√

1 − λ
4π2m4 F 2



 =
F −

√
λ

2πm2 F 2v

1 − λ
4π2m4 F 2

. (2.30)
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This is in precise agreement with (2.29). Similarly, it is easy to see that the µ = 0 compo-

nent of (2.26) yields the expected result dE/dt = Fv with E as in (2.28).

We have thus verified that our quark equation of motion reproduces the en-

ergy/momentum split between quark and radiation field previously deduced in [25] for

the case of one-dimensional motion. It becomes clear then that (2.26) encodes the covari-

ant generalization of this split to the case of arbitrary motion — a result that would have

been extraordinarily difficult to obtain using the non-covariant approach of [25]. To make

this generalization explicit, we rewrite our equation in the form

dPµ

dτ
≡ dpµ

q

dτ
+

dPµ
rad

dτ
= Fµ, (2.31)

recognizing

pµ
q =

mdxµ

dτ −
√

λ
2πmFµ

√

1 − λ
4π2m4F2

(2.32)

as the intrisic four-momentum of the quark, and

dPµ
rad

dτ
=

√
λF2

2πm2

(

dxµ

dτ −
√

λ
2πm2Fµ

1 − λ
4π2m4F2

)

(2.33)

as the rate at which four-momentum is carried away from the quark by chromo-

electromagnetic radiation.

Using again the fact that F · ∂τx = 0, we can immediately deduce from (2.32) the

mass-shell condition p2
q = −m2, which shows in particular that pµ

q is indeed a four-vector,

and so the split Pµ = pµ
q + Pµ

rad
defined in (2.31)–(2.33) is correctly Lorentz covariant.

As we indicated above, Pµ
rad

represents the portion of the total four-momentum stored

at any given time in the purely radiative part of the gluonic field set up by the quark.

The remainder, pµ
q , includes the contribution of the near field sourced by our particle, or in

quantum mechanical language, of the gluonic cloud surrounding the quark, which gives rise

to the deformed dispersion relation seen in (2.32). In other words, pµ
q is the four-momentum

of the ‘dressed’ or ‘composite’ quark. All of this is completely analogous to the classical

electromagnetic case that we briefly reviewed in the Introduction, and in particular, to the

covariant splitting of the Maxwell tensor achieved in [11]. It is truly remarkable that the

AdS/CFT correspondence grants us such direct access to this piece of strongly-coupled

non-Abelian physics.

Now that we have performed some checks on (2.26) and understood its proper physical

interpretation, we should consider its implications. As noticed already in [25] for the

case of linear motion, a salient feature of the equation of motion (2.26), as well as the

dispersion relation (2.32) and radiation rate (2.33), is the presence of a divergence when

F2 = F2
crit, where

F2
crit =

4π2m4

λ
(2.34)

is the critical value at which the force becomes strong enough to nucleate quark-antiquark

pairs (or, in dual language, to create open strings) [24].
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Let us now examine the behavior of a quark that is sufficiently heavy, or is forced

sufficiently softly, that the condition
√

λ|F2|/2πm2 ≪ 1 (i.e., |F2| ≪ |F2
crit|) holds. It is

then natural to expand the equation of motion in a power series in this small parameter.

To zeroth order in this expansion, we have the pointlike result md2xµ/dτ2 = F , as we had

already mentioned above. If we instead keep terms up to first order, we find

m
d

dτ

(

dxµ

dτ
−

√
λ

2πm2
Fµ

)

= Fµ −
√

λ

2πm2
F2 dxµ

dτ
. (2.35)

In the O(
√

λ) terms it is consistent, to this order, to replace Fµ with its zeroth order value,

thereby obtaining

m

(

d2xµ

dτ2
−

√
λ

2πm

d3xµ

dτ3

)

= Fµ −
√

λ

2π

d2xν

dτ2

d2xν

dτ2

dxµ

dτ
. (2.36)

Interestingly, (2.36) coincides exactly with the Lorentz-Dirac equation (1.2)! As ex-

pected from the discussion in the preceding paragraphs, on the left-hand side we find the

Schott term (associated with the near field of the quark) arising from the modified disper-

sion relation (2.32). On the right-hand side we see the radiation reaction force given by the

covariant Lienard formula, as expected from the result (2.12) [30], which is the pointlike

limit of the radiation rate (2.33). Moreover, by comparing (1.2) and (2.36) we learn that it

is zm =
√

λ/2πm that plays the role of characteristic time/size te for the composite quark.

As we discussed around (2.7), zm is the Compton wavelength (i.e., size of the gluonic cloud)

of the quark, which is indeed the natural quantum scale of the problem.

If we continue with the expansion of (2.26), the result at second order can be written as

m̊x̊µ −
√

λ

2π
(̊̊x̊µ −˚̊xν˚̊xνx̊

µ) +
λ

4π2m

(

˚̊̊̊xµ − 3̊x̊ν˚̊̊xνx̊
µ − 3

2
˚̊xν˚̊xν̊ x̊

µ

)

= Fµ .

We can of course continue this expansion procedure to arbitrarily high order in
√

λ|F2|/2πm2, and at order n in this parameter, we would obtain an equation with deriva-

tives up to order n + 2. Now, it is interesting to note that, in the case of non-relativistic

QED, there are actually two different scales that appear in the corresponding equation of

motion [12]: while the terms with derivatives of fourth and higher order are all characterized

by the quantum (Compton) radius λC = ~/m, the third-derivative (i.e., Abraham-Lorentz)

term involves only the classical electron radius cte = e2/mc2 ≪ λC . In our strongly-coupled

non-Abelian setting, the analogs of these two scales happen to coincide. On the one hand,

zm is analogous to λC in that it gives the size of the cloud of virtual particles surrounding

the quark, which as we explained at the end of section 2, is set by the meson (and not the

quark) mass, zm = 1/mmes. On the other hand, zm is also analogous to cte in that it gives

the radius of a charge distribution whose chromoelectrostatic energy equals the quark mass

m, if we take into account the strong-coupling form of the potential V (L) ∝
√

λ/L [53].

As promised in the Introduction, our full equation (2.26) is thus recognized as an ex-

tension of the Lorentz-Dirac equation that automatically incorporates the size zm of our

non-classical, non-pointlike and non-Abelian source. The passage from (2.36) to (2.26),
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which can be viewed intuitively as the addition of an infinite number of higher derivative

terms (zmd/dτ)n, has a profound impact on the space of solutions. Here we will limit

ourselves to two general observations, leaving the search for specific examples of solutions

to the next section. The first is to notice that, unlike its classical electrodynamic coun-

terparts (1.1) and (1.2), our composite quark equation of motion has no pre-accelerating

or self-accelerating solutions. That is to say, the behavior of the quark at any given time

τ does not depend on Fµ(τ ′) at τ ′ > τ , and, in the (continuous) absence of an external

force, (2.26) uniquely predicts that the four-acceleration of the quark must vanish. Our

second observation, however, is that the converse to this last statement is not true: con-

stant four-velocity does not uniquely imply a vanishing force. We will expand on this in

the examples of the next section.

Notice that, in the systematic approach from our result (2.26) to the Lorentz-Dirac

equation, the pathologies that afflict the latter appear only in the very last step, when

the ˚̊̊xµ term is introduced upon approximating (2.35) by (2.36). Indeed, it has often

been advocated to eliminate these pathologies by a ‘reduction of order’ procedure (see,

e.g., [5, 54]), which treats the damping force as a perturbative correction and thereby

justifies the replacement of (2.36) by (2.35). (A closely related line of reasoning can be

found in [55].) It is therefore satisfying to see that the dressed quark equation of motion

predicted by AdS/CFT, eq. (2.26), automatically comes out in ‘reduced order’ form.

It is curious to note that (2.26), which incorporates the effect of radiation damping

on the quark, has been obtained from (2.8), which does not include such damping for

the string itself. The supergravity fields set up by the string are of order 1/N2
c , and

therefore subleading at large Nc. Even more curious [48] is the fact that it is precisely these

suppressed fields that encode the gluonic field profile generated by the quark, as has been

explored in great detail (mostly at finite temperature) in recent years (see, e.g., [56] and

references therein). It would be interesting to explore how the split into near and radiation

fields is achieved from this perspective, but we leave this problem to future work [32].

It is natural to inquire whether the equation of motion (2.26) can be encoded in a

variational principle. Since the complete system includes the composite quark in interaction

with its radiation field, and the four-momentum of the latter is given by an integral over

the quark worldline, at least naively we would expect that, if it is at all possible to write

down an action, it should depend bilocally on the worldline. This would rule out the

obvious candidate action, namely S = SNG + SF with the classical solution (2.17) plugged

in. Indeed, the latter procedure simply leads again to (2.16) (with τ in the Nambu-Goto

term relabeled to τ̃), which (2.21) allows to be converted into

S = −m

∫

dτ
√

1 − λ
4π2m4F2

+

∫

dτ Aµ(x(τ)) x̊µ(τ) (2.37)

Unlike what happened in the pointlike (and no radiation damping) limit m → ∞, in this

case variation of S with respect to xµ holding Fµ fixed does not yield the correct equation

of motion (2.26). Of course, S is by definition the correct on-shell action for the system,

in the sense that it yields the right number when evaluated on a given worldline (using
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the Fµ(τ) obtained by solving (2.26)), but it would somehow need to be rewritten in

bilocal form to explicitly show all relevant xµ dependence and thus constitute the desired

variational principle.

3 Examples

3.1 One-dimensional motion

We have already seen in section 2.2 that, in the case of one-dimensional motion, our general

equation of motion (2.26) reduces to (2.30). The latter can be further simplified to

a =
zm /F (1 − v2)3/2

√

1 − z4
m /F

2
+

z2
m /̇F (1 − v2)

1 − z4
m /F

2
. (3.1)

where we have preferred to express the prefactors in terms of the quark Compton

wavelength zm instead of its mass m, and as in (2.23) we have used the abbreviation

/F ≡ (2π/
√

λ)F . Here we see directly that, in contrast with the usual case, the acceleration

at any given time depends not only on the value of the applied force but also on its rate

of change.

It follows from (3.1) that a quark that is free for any extended period of time will

not accelerate. In other words, as we had already indicated in the general discussion

below (2.36), there are no self-accelerating solutions, which is just as one would have

expected given the extended nature of the charge. On the other hand, the very fact that

the charge has a ‘deformable’ internal structure implies that there is more than one way to

get it to follow any given trajectory. Indeed, for any choice of v(t), (3.1) fixes the applied

force /F (t) not algebraically, but through a differential equation that inevitably gives rise

to a one-parameter family of solutions (differing by their initial conditions).

The simplest example of this non-uniqueness of the external force is the case of constant

velocity, where (3.1) can be easily seen to imply that

/F (t) = ± 1

z2
m

sech

(√
1 − v2

zm
(t − t0)

)

, (3.2)

with t0 an integration constant. Only for t0 → ±∞ does one recover the simple result

F (t) = 0. For all finite values of the integration constant, the force starts out at zero at

asymptotically early times, rises steadily until it attains the critical value F =
√

λ/2πz2
m

given by (2.34) at t = t0, and then approaches zero again as t → ∞.

It is certainly peculiar that one can continually apply a force to the quark and still have

it move at constant velocity. Nonetheless, it is easy to verify through numerical integration

that indeed the application of the force (3.2) to the endpoint of a string whose initial

profile is chosen in accord with (2.27) produces no acceleration. The energy provided to

the system by F (t) does not translate into an increase of the endpoint velocity, but into

a continuous modification of the string tail, or, in gauge theory language, a change of the
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gluonic field profile. In fact, with the formulas derived in the previous section, we can make

a much more precise statement: (2.32) and (2.33) reduce to [25]

Eq =





1 − z2
m /Fv

√

1 − z4
m /F

2



 γm ,
dErad

dt
= z2

m /F
2

(

1 − z2
m /Fv

1 − z4
m /F

2

)

,

where we see that application of the force (3.2) results in

Eq =

{∣

∣

∣

∣

coth

(

t − t0
γzm

)∣

∣

∣

∣

∓ v

∣

∣

∣

∣

csch

(

t − t0
γzm

)∣

∣

∣

∣

}

γm ,

dErad

dt
= csch2

(

t − t0
γzm

)[

1 − v sech2

(

t − t0
γzm

)]

,

which show precisely what fraction of the energy goes into (or comes out from) rearranging

the near gluonic field, and what fraction goes into radiation. In the limit t0 → ±∞, no

force is applied and we of course recover Eq = γm, dErad/dt = 0 at all times. Similar

conclusions can be drawn about the linear quark momentum.

Notice that the width of the time interval over which the force (3.2) differs appreciably

from zero is just the Compton wavelength of the quark, zm (with an appropriate Lorentz

dilation factor), which serves to emphasize that this peculiar phenomenon is made possible

only due to the non-pointlike nature of our non-Abelian source.

This non-uniqueness of the force is equally present for arbitrary trajectories. Another

example that is easy to study is the case of constant force. If we assume that F (t) =

constant, (3.1) reduces to d(γv)/dt = zm /F/

√

1 − z4
m /F

2
, which has the same form as the

standard equation of motion for a particle with constant proper acceleration, except that

the force here is non-linearly rescaled. The solution is thus

x(t) = x0 ±
√

1

z2
m /F

2
− z2

m + (t − t0)2 ,

where x0 and t0 are integration constants. But if we run the argument in reverse, and

ask what type of force would lead to the hyperbolic motion x(t) = x0 ±
√

C2 + (t − t0)2,

we see again that the differential equation (3.1) admits solutions other than the obvious

/F (t) = 1/zm

√

C2 + z2
m.

Before closing this subsection, we would like to make one additional observation. After

some straightforward algebra, it is easy to see that (2.33) can be rewritten in the form

dPµ
rad

dτ
=

√
λ

2πm2





F2

√

1 − λ
4π2m4F2



 pµ
q . (3.3)

Plugging this into (2.31), one obtains a first order differential equation for pµ
q with the

same structure as the Langevin equation, but with a friction coefficient that depends on

the external force,
dpµ

q

dτ
= −µ(F)pµ

q + Fµ , (3.4)
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where µ(F) ≡ (
√

λ/2πm2)F2/
√

1 − λ/4π2m4F2. In the case of motion in one spatial

dimension, this equation can be solved analytically,

pq = exp



−
√

λ

2πm2

∫ t F2(x)
√

1 − λ
4π2m4F2(x)

dx





×



A +

∫ t

exp

( √
λ

2πm2

∫ y F2(x)
√

1 − λ
4π2m4F2(x)

dx

)

F(y)dy



 , (3.5)

with A an integration constant. We should stress that this solution is valid only in the

case of one dimensional motion, where F2 = ~F 2. In two or three spatial dimensions we

have not been able to construct an explicit solution, because in that case F2 involves

the velocity of the quark, and remains undetermined until we find the quark trajectory.

Nevertheless, it is interesting to note that, in the case of constant F2 (which is not

the same as constant ~F 2), equation (3.4) can be interpreted as a Langevin equation of

motion for a particle with momentum pq (up to a constant term). The force in terms of

the physical time t is just the force needed to move the quark in a ‘dissipative medium’

characterized by the constant friction coefficient µ.

It would be interesting to explore the dynamics of the dressed quark in two or three

spatial dimensions. However, as we have just remarked, in that case (2.26) is highly nonlin-

ear not only in the external force (which it was already in one dimension), but also in the

velocity of the quark. For this reason, it is unfortunately very difficult to find analytic so-

lutions to it. In the heavy quark (or small force) approximation where (2.26) linearizes and

reduces to the Lorentz-Dirac equation (2.36), we could of course carry over to our setting

the various solutions that have been worked out in the past. For instance, in the first refer-

ence of [7], Rohrlich was able to find an analytic solution for a central force problem using

the Frenet equations. Starting from this and perturbing the solution it should be possible

to obtain (at least numerically) the first correction beyond Lorentz-Dirac predicted by our

framework, and deduce for instance the r ate of synchrotron radiation. Such a calculation

might shed some additional light on the physics behind these extended objects, but is not

central for the purposes of our analysis here, so we prefer to leave it for future work.

3.2 Nonrelativistic limit

Let us now choose a specific Lorentz frame (~x, t), and restrict attention to motions such

that the quark velocity ~v ≡ d~x/dt, acceleration ~a ≡ d2~x/dt2, jerk ~ ≡ d3~x/dt3, and all

higher derivatives, as well as the force /F and its rate of change d/F/dt, are small in units of

the Compton wavelength zm. Under such conditions dτ ≃ dt, and the spatial components

of (2.25) adopt the linearized form

d2~x

dt2
− zm

d3~x

dt3
+ z2

m

d4~x

dt4
− · · · = zm

~/F . (3.6)

Adding to this expression its time derivative multiplied by zm, we obtain the simplified form

d2~x

dt2
= zm

~/F + z2
m

d~/F

dt
, (3.7)
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which is the linearized version of (2.26). We see here very directly that, as explained in

section 2.2, the unusual dependence on the rate of change of the force encodes an infinite

number of higher derivatives of the quark trajectory ~x(t), derivatives which in turn reflect

the extended nature of the quark.

It is also useful to note that in this linearized limit, the string embedding (2.27) can

be rewritten in the form

~X(t, z) = ~x(tret) + (z − zm)

∞
∑

l=1

(−zm)l−1 dl~x

dtl
(tret) , tret ≡ t − z + zm , (3.8)

which involves only the quark worldline ~x(t) and not the force ~F (t). If we plug this into the

(quadratic version of the) total string energy E(t) ≡ −
∫

dzΠt
t =

∫

dz( ~̇X2 + ~X
′2)/2, and

imitate Mikhailov’s procedure [30] (see section 2.2), the expression naturally splits into

E(t) =

∫ t

−∞
dtret

dErad

dtret
+ Eq(t) ,

with

Eq(t) =
1

2
m

( ∞
∑

l=1

(−zm)l−1 dl~x

dtl
(t)

)2

and

dErad

dtret
=

( ∞
∑

l=2

(−zm)l−2 dl~x

dtl
(tret)

)2

+
zm

(t − tret + 1)2
d~x

dt
(tret) ·

( ∞
∑

l=2

(−zm)l−2 dl~x

dtl
(tret)

)

.

Using (3.6), it is easy to check that these expressions indeed coincide with the non-

relativistic limit of the time component of (2.32) and (2.33). The spatial components can

be verified in a similar manner. Notice that, in the relativistic case analyzed in [25] and

section 2.2 of the present work, the explicit presence of the force Fµ in the solution (2.27)

prevents us from deriving the split (2.31) as we did here, directly imitating Mikhailov’s

procedure. It is therefore comforting to see that, at least in the non-relativistic case, the

direct result at z = zm indeed agrees with what we had previously inferred indirectly from

Mikhailov’s unambiguous split for the auxiliary data at z = 0.

Just like in the fully relativistic setting, if we directly substitute (3.8) into the

(quadratic version of the) string action (2.3) + (2.4), we do not arrive at a variational

principle that correctly encodes the equation of motion (3.6) or (3.7). Here, however, it

is easy to write down an action that does the right job. In fact, we have not one but (at

least) two options: we can evidently get (3.6) from

Snr = −m

2

∫

dt

[

(

d~x

dt

)2

+

(

d2~x

dt2

)2

+

(

d3~x

dt3

)2

+ · · ·
]

+

∫

dt ~F · ~x ,

and (3.7) evidently follows from

S′
nr = −m

2

∫

dt

(

d~x

dt
− zm

∫ t

dt′~/F (t′) − z2
m

~/F (t)

)2

.
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It is curious to note that the action Snr in terms of higher order derivatives of the

position vector with respect to τ is reminiscent of the dynamical description of a particle

in noncommutative symplectic mechanics given in [57], where it was found that the action

can be written in terms of higher order derivatives of the position vector despite the fact

that the equations of motion are of second order.

Let us now explore some solutions. Either from S′
nr or directly from the equation of

motion (3.7), one immediately has a first integral of the motion,

d~x

dt
= zm

∫ t

−∞
dt′~/F (t′) + z2

m
~/F (t) + ~v−∞ .

The case with zero acceleration corresponds to /~F + zm
/̇~F= 0, whose solution is ~/F (t) =

~/F 0 exp[−(t − t0)/zm]. This is of course simply the non-relativistic limit of (3.2). Since

we are working now in the linearized approximation, this solution of the homogeneous

equation of motion can be added to any solution of the inhomogeneous equation (3.7) to

yield another solution, so it is very clear that the non-uniqueness of the force is present for

any quark trajectory whatsoever. The reason is by now familiar to us: the energy provided

to the dressed quark by this one-parameter family of forces has the effect of modifying the

gluonic field profile, and consequently does not translate into an increase of velocity.
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